answersLogoWhite

0

I am not sure this question can be answered in a sensible way.

Y is given as a function of t but there is no functional relation between t and x.

Also, it is not clear what the " 1 2" is meant to represent.

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
RossRoss
Every question is just a happy little opportunity.
Chat with Ross

Add your answer:

Earn +20 pts
Q: Y CostSect 1 2 find dy dx?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the derivative of xy-2y equals 1?

by implicit differentiation you have y+x*dy/dx-2dy/dx=0 solving for dy/dx you'll have dy/dx=y/(2-x) and solving for y in the original equation and plugging it back in, you'll get dy/dx=1/(-x^2 +4x-4) which is your final answer


What is differential equation of x-y equals xy?

x - y = xydifferentiating wrt x1 - (dy/dx) = x(dy/dx) + y(x + 1)(dy/dx) + y + 1 = 0


What is the derivative of square root of x-5?

Use Cahin Rule dy/dx = dy/du X du/dx Hence y = ( x-5)^(1/2) Let x - 5 = u Hence dy/du = (1/2)u^(-1/2) du/dx = 1 Combining dy/dx = (1/2)(x-5)^(-1/2)) X 1 dy/dx = 1/ [2(x-5)^(1/2)] Done!!!!


How do you find the derivative of 3 times the square root of x?

Suppose the relation is equal to y then y=3x^1/2 dy/dx = 3*1/2*x^-1/2*1 dy/dx = 3/2*1/x^1/2*1 dy/dx = 3/2x^1/2 First we have retained the constant term i.e. 3 and then we have applied the power rule on x i.e. (nxn-1).


What is the derivative of cos x raised to the x?

cos(xx)?d/dx(cosu)=-sin(u)*d/dx(u)d/dx(cos(xx))=-sin(xx)*d/dx(xx)-The derivative of xx is:y=xx ;You have to use implicit derivation because there is no formula for taking the derivative of uu.lny=lnxxlny=xlnx-The derivative of lnx is:d/dx(lnu)=(1/u)*d/dx(u)-d/dx(uv)= u*dv/dx+v*du/dxTherefore:(1/y)*dy/dx=x*[(1/x)*d/dx(x)]+lnx(d/dx(x))-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1(1/y)*dy/dx=x*[(1/x)*(1)]+lnx(1)(1/y)*dy/dx=x*[(1/x)]+lnx(1/y)*dy/dx=(x/x)+lnx(1/y)*dy/dx=1+lnxdy/dx=y(1+lnx) ;Multiply y to both sidesdy/dx=xx(1+lnx) ;y=xx, so replace the y with xxd/dx(cos(xx))=-sin(xx)*[xx*(1+lnx)]d/dx(cos(xx))=-(1+lnx)*xx*sin(xx)(cosx)x?Again with the implicit derivation:y=(cosx)xlny=x*ln(cosx)(1/y)*dy/dx=x[d/dx(lncosx)]+lncosx(d/dx(x))(1/y)*dy/dx=x[(1/cosx)*(-sinx)(1)]+lncosx(1) ;The derivative of lncosx is (1/cosx)*d/dx(cosx). The derivative of cosx is (-sinx)*d/dx (x). The derivative of x is 1.(1/y)*dy/dx=x[(1/cosx)*(-sinx)]+lncosx(1/y)*dy/dx=x[-tanx]+lncosx(1/y)*dy/dx=-xtanx+lncosxdy/dx=y(-xtanx+lncosx) ;Multiply both sides by ydy/dx=(cosx)x(-xtanx+lncosx) ;y=(cosx)x, replace all y's with (cosx)xdy/dx=(cosx)x(-xtanx+lncosx)=(cosx)x-1(cosx*lncosx-xsinx)