answersLogoWhite

0

What else can I help you with?

Related Questions

Is there a relationship between the degree of a polynomial and the number of times its graphed curve changes direction?

I think that there is not .


How do you find the roots of a polynomial of graphed points?

Join the points using a smooth curve. If you have n points choose a polynomial of degree at most (n-1). You will always be able to find polynomials of degree n or higher that will fit but disregard them. The roots are the points at which the graph intersects the x-axis.


What is the factorization of the polynomial graphed below?

90


What kind of polynomial is x-3?

The expression ( x - 3 ) is a linear polynomial because it is a polynomial of degree 1. It can be expressed in the standard form ( ax + b ), where ( a = 1 ) and ( b = -3 ). Linear polynomials represent straight lines when graphed on a coordinate plane.


Is 13 a polynomial If it is find its degree and classify it by the number of its terms?

13 is not a polynomial.


how many roots does the graphed polynomial function have?

here is the graph


How do you find the degrees of a polynomial?

Find the degree of each term. The greatest degree is the degree of the polynomial. e.g. the degree of x2+x+1 is 2, the degree of x3+x2+x+1 is 3 etc


How can you find a degree in a polynomial?

The degree of a polynomial is the highest degree of its terms. The degree of a term is the sum of the exponents of the variables that appear in it.7x2y2 + 4x2 + 5y + 13 is a polynomial with four terms. The first term has a degree of 4, the second term has a degree of 2, the third term has a degree of 1 and the fourth term has a degree of 0. The polynomial has a degree of 4.


What degree of polynomial will be produced by multiplying a third degree polynomial and a fourth degree polynomial?

seventh degree polynomial x3 times x4 = x7


What are the kind of polynomial according to the number of degree?

Polynomials are classified based on their degree as follows: a polynomial of degree 0 is a constant polynomial, of degree 1 is a linear polynomial, of degree 2 is a quadratic polynomial, of degree 3 is a cubic polynomial, and of degree 4 is a quartic polynomial. Higher degree polynomials continue with quintic (degree 5), sextic (degree 6), and so on. The degree indicates the highest exponent of the variable in the polynomial.


How do you find the degree of a polyomial?

For a single variable, the degree is the highest power that appears in the polynomial.


A quadratic polynomial is a third-degree polynomial?

No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).