2
Chat with our AI personalities
AC=5 AB=8 A=1 B=8 C=5 BC=40
Take a right angled triangle ABC with the right angle at B, so that AC is the hypotenuse. Let AC be 1 unit long. Using the angle CAB, the length of AC and the trigonometric ratios: sin = opposite/hypotenuse ⇒ sin CAB = AB/AC = AB/1 = AB cos = adjacent/hypotenuse ⇒ cos CAB = BC/AC = BC/1 = BC Using Pythagoras: AB2 + BC2 = AC2 ⇒ (sin CAB)2 + (cos CAB)2 = 12 ⇒ sin2θ + cos2θ = 1
the value of log (log4(log4x)))=1 then x=
a/b = 1 so a = b. Then a b = q implies that a = b = q/2 So ab = (q/2)*(q/2) = q2/4
If you mean endpoints of (-1, -3) and (11, -8) then the length works out as 13