z=(x-mu)/s = (-10+9)/2 z = -1/2 Note that the standard normal has a mean of 0, therefore: The value of -10 is to the left of the mean of -9 The value of -1/2 is to the left of the mean of 0.
Chat with our AI personalities
No. The standard deviation is not exactly a value but rather how far a score deviates from the mean.
If a random variable X has a Normal distribution with mean m and standard deviation s, then z = (X - m)/s has a Standard Normal distribution. That is, Z has a Normal distribution with mean 0 and standard deviation 1. Probabilities for a general Normal distribution are extremely difficult to obtain but values for the Standard Normal have been calculated numerically and are widely tabulated. The z-transformation is, therefore, used to evaluate probabilities for Normally distributed random variables.
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
No standard deviation can not be bigger than maximum and minimum values.
No. Standard deviation is not an absolute value. The standard deviation is often written as a single positive value (magnitude), but it is really a binomial, and it equals both the positive and negative of the given magnitude. For example, if you are told that for a population the SD is 5.0, it really means +5.0 and -5.0 from the population mean. It defines a region within the distribution, starting at the lower magnitude (-5.0) increasing to zero (the mean), and another region starting at zero (the mean) and increasing up to the upper magnitude (+5.0). Both regions together define the (continuous) region of standard deviation from the mean value.