The 99th term would be a times r to the 98th power ,where
a is the first term and r is the common ratio of the terms.
Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5
2946
1240
A sequence is geometric if each term is found by mutiplying the previous term by a certain number (known as the common ratio). 2,4,8,16, --> here the common ratio is 2.
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by 10.
-5,120
Yes, that's what a geometric sequence is about.
To find the 99th term in a sequence that counts by twos, we can use the formula for the nth term of an arithmetic sequence: ( a_n = a_1 + (n - 1) \cdot d ), where ( a_1 ) is the first term, ( n ) is the term number, and ( d ) is the common difference. In this case, ( a_1 = 2 ), ( d = 2 ), and ( n = 99 ). Plugging in these values: ( a_{99} = 2 + (99 - 1) \cdot 2 = 2 + 196 = 198 ). Therefore, the 99th term is 198.
Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5
To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.
nth term Tn = arn-1 a = first term r = common factor
The formula used to find the 99th term in a sequence is a^n = a^1 + (n-1)d. a^1 is the first term, n is the term number we wish to find, and d is the common difference. In order to find d, the pattern in the sequence must be determined. If the sequence begins 1,4,7,10..., then d=3 because there is a difference of 3 between each number. d can be quite simple or more complicated as it can be a function or formula in of itself. However, in the example, a^1=1, n=99, and d=3. The formula then reads a^99 = 1 + (99-1)3. Therefore, a^99 = 295.
To express a geometric sequence in function notation, identify the first term (a) and the common ratio (r) of the sequence. The nth term of a geometric sequence can be represented as ( f(n) = a \cdot r^{(n-1)} ), where ( n ) is the term number. For example, if the first term is 2 and the common ratio is 3, the function notation would be ( f(n) = 2 \cdot 3^{(n-1)} ). This allows you to calculate any term in the sequence using the function ( f(n) ).
To find the fifth term of the geometric sequence 8, 0, 4, 0, 20, we need to identify a pattern. The terms appear to alternate between zero and other values, but there might be a misunderstanding since the terms provided don't follow a consistent geometric ratio. Assuming the sequence is correct as given, the fifth term is 20.
The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).
To determine if a sequence is geometric, check if the ratio between consecutive terms is constant. You can calculate the ratio by dividing each term by the preceding term. If this ratio remains the same for all pairs of consecutive terms, then the sequence is geometric. Additionally, a geometric sequence can be verified using a geometric sequence calculator, which will confirm the common ratio and provide further analysis.
2946