answersLogoWhite

0

The 99th term would be a times r to the 98th power ,where

a is the first term and r is the common ratio of the terms.

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

Find the 10th term of the geometric sequence 10,-20,40…?

-5,120


Is geometric sequence a sequence in which each successive terms of the sequence are in equal ratio?

Yes, that's what a geometric sequence is about.


What is the 7th term in the geometric sequence whose first term is 5 and the common ratio is -2?

Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5


How do you find the given term in a geometric sequence?

nth term Tn = arn-1 a = first term r = common factor


What is the nth term of the geometric sequence 4 8 16 32 ...?

The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).


In the geometric sequence 4,12,36,....which term is 8748?

2946


What is the fifth term to the geometric sequence 804020?

To find the fifth term of the geometric sequence 8, 0, 4, 0, 20, we need to identify a pattern. The terms appear to alternate between zero and other values, but there might be a misunderstanding since the terms provided don't follow a consistent geometric ratio. Assuming the sequence is correct as given, the fifth term is 20.


How do you find the 99th term in a sequence?

The formula used to find the 99th term in a sequence is a^n = a^1 + (n-1)d. a^1 is the first term, n is the term number we wish to find, and d is the common difference. In order to find d, the pattern in the sequence must be determined. If the sequence begins 1,4,7,10..., then d=3 because there is a difference of 3 between each number. d can be quite simple or more complicated as it can be a function or formula in of itself. However, in the example, a^1=1, n=99, and d=3. The formula then reads a^99 = 1 + (99-1)3. Therefore, a^99 = 295.


When In a geometric sequence the term an plus 1 can be smaller than the term a?

Yes, it can.


What is the next term in the geometric sequence 4-1236?

1240


How do you determine if a sequence is geometric?

A sequence is geometric if each term is found by mutiplying the previous term by a certain number (known as the common ratio). 2,4,8,16, --> here the common ratio is 2.


How do you find the 99th number in the sequence 5 8 11 14 17?

The sequence seems to be calculated by f(n) = 3n + 2.3(1) + 2 = 5, 3(2) + 2 = 8, 3(3) + 2 = 11, and so on.Therefore, the 99th term would be 3(99) + 2 = 299