Two points do not provide enough information to define a circle: a minimum of three points is required to uniquely define a circle unless one of the points happens to be the centre and the other is on the circle. In that case, however, it is necessary to know which is which.
The equation for a circle is a function in that it can be graphed and charted. One common equation is x^2 + y^2 = r^2.
Equation of the circle: (x-3)^2 +( y+13)^2 = 169
The points will form a right angle triangle in a circle whose hypotenuse is its diameterLength from (8, 5) to (5, 1) = 5Midpoint: (6.5, 3) which is the centre of the circleRadius: 2.5Equation of the circle: (x-6.5)^2+(y-3)^2 = 6.25
It's a circle. The equation of a circle is x^2+y^2=r^2. So the equation you've given is a circle with a radius of 4 and, since there are no modifications to the x or y values, the center of the circle is located at (0,0).
The equation of a circle with center (0,2) and radius r is x^2+(y-2)^2=r^2 Since it passes through (0,0) (the origin) 0^2+(0-2)^2=r^2 r^2=4 The equation of the circle is x^2+(y-2)^2=4
The standard equation for a circle centered at the origin (0, 0) with radius ( r ) is given by ( x^2 + y^2 = r^2 ). In this equation, ( x ) and ( y ) represent the coordinates of any point on the circle, and ( r ) is the radius. This equation describes all points that are a distance ( r ) from the center.
In the standard equation of a circle centered at the origin, (x^2 + y^2 = r^2), the number that changes when you make the circle bigger or smaller is (r^2), where (r) is the radius of the circle. As you increase or decrease the radius, (r^2) will correspondingly increase or decrease. The values of (x) and (y) remain constant as they represent points on the circle.
The standard equation for a circle centered at the origin with a radius ( r ) is given by the formula ( x^2 + y^2 = r^2 ). In this equation, ( (x, y) ) represents any point on the circle, and ( r ) is the distance from the center to any point on the perimeter. This equation describes all points that are exactly ( r ) units away from the origin (0, 0).
Points: (2, -3) and (-2, 0) Slope: -3/4 Equation: y = -0.75x-1.5
The standard equation of a circle, with center in (a,b) and radius r, is: (x-a)2 + (y-b)2 = r2
The radius of the circle decreases when you make the circle smaller.
To draw a flowchart for finding the equation of a circle passing through three given points, start by defining the three points as ( A(x_1, y_1) ), ( B(x_2, y_2) ), and ( C(x_3, y_3) ). Next, set up the general equation of a circle ( (x - h)^2 + (y - k)^2 = r^2 ) and derive a system of equations by substituting the coordinates of the points into this equation. Solve the resulting system of equations for the center coordinates ( (h, k) ) and the radius ( r ), and finally, express the equation of the circle in standard form.
If you mean a circle center at (3, 1) and a radius of 2 then the equation of the circle is (x-3)^2 +(y-1)^2 = 4
To find the standard equation for a circle centered at the origin, we use the distance formula to define the radius. The equation is derived from the relationship that the distance from any point ((x, y)) on the circle to the center ((0, 0)) is equal to the radius (r). Thus, the standard equation of the circle is given by (x^2 + y^2 = r^2). Here, (r) is the radius of the circle.
The formula for the center of a circle is given by the coordinates ((h, k)) in the standard equation of a circle, which is ((x - h)^2 + (y - k)^2 = r^2). Here, ((h, k)) represents the center of the circle, and (r) is the radius. If the equation is presented in a different form, you can derive the center by rearranging the equation to match the standard form.
End points: (8, 7) and (2, -3) Midpoint: (5, 2) which is the center of the circle Radius: square root of 34 Equation of the circle: (x-5)^2 +(y-2)^2 = 34
If you mean a circle center at (3, 1) and a radius of 2 then the equation of the circle is (x-3)^2 +(y-1)^2 = 4