255 in decimal.
377 in octal.
11111111 in binary.
Chat with our AI personalities
100, which equals 163 in hexadecimal.
0xff = 16 x 15 + 15 = 255 The letters A-F are used to represent the decimal numbers 10-15 (respectively) which are required to be held in one hexadecimal digit.
Yes, a byte is 8 bits, and a one hexadecimal digit takes up four bits, so two hexadecimal digits can be stored in a byte. The largest hexadecimal digit is F (which is 15 in base ten.) In base two, this converts to 1111, which takes up four bits, which is why it only takes four bits to store a hexadecimal digit. With 8 bits, two hexadecimal digits can be stored (FF would be 11111111, which is 8 bits), and 8 bits make up a byte. Generally, 4 bits are always used to store a hexadecimal digit, using leading zeros where necessary. For example, the hexadecimal digit 5 would be stored as 0101, and the hexadecimal digits 5A would be stored as 01011010.
162 - 1 = 255 Strictly speaking the highest value is FF which, in decimal is 1515 = 4.38*1017 or approx 438 quadrillion.
FF in Hex is the same as 255 in Decimal, 377 in Octal and 11111111 in Binary FF in Hex is the same as 255 in Decimal, 377 in Octal and 11111111 in Binary