sin(x) = tan(x) when x equal 0
Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]
y = -5tan(x) can also be written y/(-5) = tan(x). In other words, the -5 just changes the y values and the orientation of the graph (it flips tan(x) over the y axis and stretches the graph up and down). So -5tan(x), like tan(x), has a period of pi. This is because tan is the y value divided by the x value at any given point on the unit circle. At 0 degrees, x is at one and y is at zero, so tan0o = 0. As we travel counterclockwise around the unit circle, tan is next equal to zero when x is equal to zero. This occurs halfway around the circle at 180o, or (in radians) pi.
sine(sin) = opp/hypcosecant(q) = hyp/oppcosine(cos) = adj/hypsecant(q) = hyp/adjtangent(tan) = opp/adjcotangent(q) = adj/opp
The inverse (negatives) of sine, cosine, and tangent are used to calculate the angle theta (or whatever you choose to name it). Initially it is taught that opposite over hypotenuse is equal to the sine of theta sin(theta) = opposite/hypotenuse So it can be said that theta = sin-1 (opp/hyp) This works the same way with cosine and tangent In short the inverse is simply what you use when you move the sin, cos, or tan to the other side of the equation generally to find the angle
sin(x) = tan(x) when x equal 0
Yes. (Theta in radians, and then approximately, not exactly.)
tan (pi) / 1 is zero. tan (pi / 1) is zero.
Cos is short for Cosine ( Complementary Sine) Similrly Sin is short for Sine Tan is short for Tangent.
Tan of 0 equals zero.
It depends if 1 plus tan theta is divided or multiplied by 1 minus tan theta.
No; those could be three different values, or sometimes two of them might be the same. For example, if the angle is 45 degrees, the values are about... cos:0.707 sin: 0.707 tan: 1 For 45 degrees, the cosine and sine are the same. For 36 degrees, cos:0.809 sin: 0.588 tan: .727
The tangent function is a periodic function with period 180 degrees sotan(360) = tan(360-2*180) = tan(0) = 0.
Cotangent is 1 / tangent. Since tangent is sine / cosine, cotangent is cosine / sine.
Tan = o/a Tangent of an angle = opposite over adjacent. Here are the other Trig. functions. SINe(angle) = opposite/hypotenuse COSine(angle) = adjacent/hypotenuse COTangent(angle) = adjacent/opposite Cosecant(CSC)(angle) = hypotenuse/oppositre SECant(angle) = hypotenuse/ adjcent.
The Answer is 1 coz, 1-Tan squarex = Cot square X. So cot square x divided cot square x is equal to 1
sin is short for sine, cos for cosine, tan for tangent. These functions are defined in several ways; one way is with a unit circle - a circle with radius 1, in which angles are measured starting on the right, and then counterclockwise. In this case, the sine is the y-coordinate on the circle - as a function of the angle. For example, for an angle of 0°, the y-coordinate is 0; for an angle of 90°, the y-coordinate is 1. Therefore, the sine of 0° is said to be zero, and the sine of 90° is said to be one. Similarly, the cosine is the x-coordinate. The tangent of x is the ratio of sine x / cosine x. - Note that in advanced math, angles are often measured in radians instead of the (rather arbitrary) degrees.