you have to do the arcsin which is sin-1 on your calculator. i have not met anyone in my life who can do sin or arcsin in their head. not even my college teachers. your theta is equal to 20degrees
because sin(2x) = 2sin(x)cos(x)
The solution is found by applying the definition of complementary trig functions: Cos (&Theta) = sin (90°-&Theta) cos (62°) = sin (90°-62°) Therefore the solution is sin 28°.
0.75
assuming that you mean what is theta if sin 4 theta = 0 then then theta=0, 0.25pi, 0.5pi, 0.75pi... if not then without additional information the best answer you can get is sin4theta=sin4theta
It is 2*sin(theta)*sin(theta) because that is how multiplication is defined!
4 sin(theta) = 2 => sin(theta) = 2/4 = 0.5. Therefore theta = 30 + k*360 degrees or 150 + k*360 degrees where k is any integer.
It is not! So the question is irrelevant.
you have to do the arcsin which is sin-1 on your calculator. i have not met anyone in my life who can do sin or arcsin in their head. not even my college teachers. your theta is equal to 20degrees
The answer will depend on where, in the sine function, the x-value appears: For example, its roles in f(x) = sin(x), or f(x, theta) = x*sin(theta) or f(x, theta) = sin(x*theta) f(theta) = sin(theta + x) are quite different.
because sin(2x) = 2sin(x)cos(x)
You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.
The solution is found by applying the definition of complementary trig functions: Cos (&Theta) = sin (90°-&Theta) cos (62°) = sin (90°-62°) Therefore the solution is sin 28°.
[]=theta 1. sin[]=0.5sin[] Subtract 0.5sin[] from both sides.2. 0.5sin[]=0. Divide both sides by 0.5.3. Sin[] =0.[]=0 or pi (radians)
0.75
sin(0)=0 and sin(very large number) is approximately equal to that same very large number.
The equation cannot be proved because of the scattered parts.