Tan^2
You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
To integrate ( \cos^2 \theta \sin \theta ), you can use a substitution method. Let ( u = \cos \theta ), then ( du = -\sin \theta , d\theta ). The integral becomes ( -\int u^2 , du ), which evaluates to ( -\frac{u^3}{3} + C ). Substituting back, the final result is ( -\frac{\cos^3 \theta}{3} + C ).
Cos(360 - X) = Trig. Identity Cos(360)Cos(x) + Sin(360)Sin(x) => 1CosX + 0Sinx => CosX + o => CosX
There is a hint to how to solve this in what is required to be shown: a and b are both squared.Ifa cos θ + b sin θ = 8a sin θ - b cos θ = 5then square both sides of each to get:a² cos² θ + 2ab cos θ sin θ + b² sin² θ = 64a² sin² θ - 2ab sin θ cos θ + b² cos² θ = 25Now add the two together:a² cos² θ + a² sin² θ + b² sin² θ + b² cos² θ = 89→ a²(cos² θ + sin² θ) + b² (sin² θ + cos² θ) = 89using cos² θ + sin² θ = 1→ a² + b² = 89
Cos theta squared
cos(t) - cos(t)*sin2(t) = cos(t)*[1 - sin2(t)] But [1 - sin2(t)] = cos2(t) So, the expression = cos(t)*cos2(t) = cos3(t)
Zero. Anything minus itself is zero.
You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.
cosine (90- theta) = sine (theta)
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
1
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0
The question contains an expression but not an equation. An expression cannot be solved.
To integrate ( \cos^2 \theta \sin \theta ), you can use a substitution method. Let ( u = \cos \theta ), then ( du = -\sin \theta , d\theta ). The integral becomes ( -\int u^2 , du ), which evaluates to ( -\frac{u^3}{3} + C ). Substituting back, the final result is ( -\frac{\cos^3 \theta}{3} + C ).
Until an "equals" sign shows up somewhere in the expression, there's nothing to prove.
The expression (\cos^2(90^\circ - \theta)) can be simplified using the co-function identity, which states that (\cos(90^\circ - \theta) = \sin(\theta)). Therefore, (\cos^2(90^\circ - \theta) = \sin^2(\theta)). This means that (\cos^2(90^\circ - \theta)) is equal to the square of the sine of (\theta).