The integral of 2-x = 2x - (1/2)x2 + C.
The integral of -x2 is -1/3 x3 .
integration by parts. Let u=lnx, dv=xdx-->du=(1/x)dx, v=.5x^2. Integral of (xlnxdx)=lnx*.5x^2-integral of .5x^2(1/x)dx=lnx*.5x^2-integral of .5xdx=lnx*.5x^2-(1/6)x^3. That's it.
The integral of arcsin(x) dx is x arcsin(x) + (1-x2)1/2 + C.
2 2x makes no sense. If you meant the integral of 2x, it is x2 + C. If you meant the integral of 4x, it is 2x2 + C. If you meant the integral of 2x2, it is 2/3 x3 + C.
0.5
In order to evaluate a definite integral first find the indefinite integral. Then subtract the integral evaluated at the bottom number (usually the left endpoint) from the integral evaluated at the top number (usually the right endpoint). For example, if I wanted the integral of x from 1 to 2 (written with 1 on the bottom and 2 on the top) I would first evaluate the integral: the integral of x is (x^2)/2 Then I would subtract the integral evaluated at 1 from the integral evaluated at 2: (2^2)/2-(1^2)/2 = 2-1/2 =3/2.
The integral of 2-x = 2x - (1/2)x2 + C.
The integral of -x2 is -1/3 x3 .
By antiderivative do you mean integral? If yes, integral x^1 dx= (x^2)/2
... -3, -2, -1, 0, 1, 2, 3, ...In summary, any integer that you use as an exponent is an "integral exponent".... -3, -2, -1, 0, 1, 2, 3, ...In summary, any integer that you use as an exponent is an "integral exponent".... -3, -2, -1, 0, 1, 2, 3, ...In summary, any integer that you use as an exponent is an "integral exponent".... -3, -2, -1, 0, 1, 2, 3, ...In summary, any integer that you use as an exponent is an "integral exponent".
Integral of 1 is x Integral of tan(2x) = Integral of [sin(2x)/cos(2x)] =-ln (cos(2x)) /2 Integral of tan^2 (2x) = Integral of sec^2(2x)-1 = tan(2x)/2 - x Combining all, Integral of 1 plus tan(2x) plus tan squared 2x is x-ln(cos(2x))/2 +tan(2x)/2 - x + C = -ln (cos(2x))/2 + tan(2x)/2 + C
integration by parts. Let u=lnx, dv=xdx-->du=(1/x)dx, v=.5x^2. Integral of (xlnxdx)=lnx*.5x^2-integral of .5x^2(1/x)dx=lnx*.5x^2-integral of .5xdx=lnx*.5x^2-(1/6)x^3. That's it.
Integral of 2x dx /(2x-2) Let 2x=u 2 dx = du dx = (1/2) du Integral of 2x dx /(2x-2) = Integral of (1/2) u du / (u-2) = Integral of 1/2 [ (u-2+2) / (u-2)] dx = Integral of 1/2 [ 1+ 2/(u-2)] dx = u/2 + (1/2) 2 ln(u-2) + C = u/2 + ln(u-2) + C = (2x/2) + ln(2x-2) + C = x + ln(2x-2) + C
The indefinite integral of (1/x^2)*dx is -1/x+C.
the integral of the square-root of (x-1)2 = x2/2 - x + C
(1+x)/(x^2+1) Let x^2+1 =u 2x dx = du x dx = du/2 (1+x) / (x^2+1) = 1/(x^2+1) + x / (x^2+1) Integral of x dx / (x^2+1) = (1/2) integral du / u = 1/2 ln|u| --(1) Integral of 1 / (x^2+1) = arctan(x) --(2) Adding (1) and (2) Integral (1+x)/(x^2+1) = (1/2) ln(x^2+1) + arctan(x) + C