According to Wittgenstein's Finite Rule Paradox every finite sequence of numbers can be a described in infinitely many ways and so can be continued any of these ways - some simple, some complicated but all equally valid. Conversely, it is possible to find a rule such that any number of your choice can be the nth one.
The simplest solution, however is Un = 3n - 4.
It is an Arithmetic Progression with a constant difference of 11 and first term 15.
Oh, dude, it's like a pattern party! So, to find the nth term for this sequence, you first need to figure out the pattern. Looks like each number is decreasing by 2. So, the nth term would be 13 - 2n. Easy peasy, right?
Without further restrictions it can be any of an infinite number of formulae.For example, U{n} = (11n⁴ - 110x³ + 385x² - 518x + 176)/8 which gives the next term as 42.However, if it is an ARITHMETIC SEQUENCE (as I suspect your teacher wants), then the nth term is found:Common difference: (-3) - (-7) = 4→ 0th term is -7 - 4 = -11→ nth term U{n} = 4n - 11
If you mean: 15 11 7 3 then the nth term is 19-4n
The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
The nth term for that arithmetic progression is 4n-1. Therefore the next term (the fifth) in the sequence would be (4x5)-1 = 19.
It is an Arithmetic Progression with a constant difference of 11 and first term 15.
10n + 1
The given sequence is an arithmetic sequence with a common difference of 7 (18-11=7, 25-18=7, and so on). To find the nth term of an arithmetic sequence, you can use the formula: a_n = a_1 + (n-1)d, where a_n is the nth term, a_1 is the first term, n is the position of the term, and d is the common difference. In this case, the first term a_1 is 11 and the common difference d is 7. So, the nth term of this sequence is 11 + (n-1)7, which simplifies to 11 + 7n - 7, or 7n + 4.
The sequence is simply achieved by adding 2 to each value9+2=1111+2=1313+2=1515+2=1717+2=1919+2=21so the nth term can be calculatedThe value of the nth term = the value of (nth-1 term) +2.
The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.
I believe the answer is: 11 + 6(n-1) Since the sequence increases by 6 each term we can find the value of the nth term by multiplying n-1 times 6. Then we add 11 since it is the starting point of the sequence. The formula for an arithmetic sequence: a_{n}=a_{1}+(n-1)d
11
clearly the given series is an arithmetic progression with a common difference of -11,that is every term is obtained by subtracting 11 from the previous term for any A.P, n-th term is a(n)=a(1)+ (n-1)d where a(1)=first term and d=common difference here a(1)=100, and d= -11 so, a(n)=100+(n-1)x(-11) or, a(n)=111-11n
The nth term in this sequence is 4n + 3.
Oh, dude, it's like a pattern party! So, to find the nth term for this sequence, you first need to figure out the pattern. Looks like each number is decreasing by 2. So, the nth term would be 13 - 2n. Easy peasy, right?
Without further restrictions it can be any of an infinite number of formulae.For example, U{n} = (11n⁴ - 110x³ + 385x² - 518x + 176)/8 which gives the next term as 42.However, if it is an ARITHMETIC SEQUENCE (as I suspect your teacher wants), then the nth term is found:Common difference: (-3) - (-7) = 4→ 0th term is -7 - 4 = -11→ nth term U{n} = 4n - 11