answersLogoWhite

0

According to Wittgenstein's Finite Rule Paradox every finite sequence of numbers can be a described in infinitely many ways and so can be continued any of these ways - some simple, some complicated but all equally valid. Conversely, it is possible to find a rule such that any number of your choice can be the nth one.


The simplest solution, however is Un = 3n - 4.

User Avatar

Wiki User

7y ago

What else can I help you with?

Related Questions

What is the nth term for 3 7 11 15?

The nth term for that arithmetic progression is 4n-1. Therefore the next term (the fifth) in the sequence would be (4x5)-1 = 19.


Is 15 26 37 48 59 an arithmetic sequence?

It is an Arithmetic Progression with a constant difference of 11 and first term 15.


What is the nth term for 11 21 31 41?

10n + 1


What is the nth term of this sequence 11 18 25 32 39?

The given sequence is an arithmetic sequence with a common difference of 7 (18-11=7, 25-18=7, and so on). To find the nth term of an arithmetic sequence, you can use the formula: a_n = a_1 + (n-1)d, where a_n is the nth term, a_1 is the first term, n is the position of the term, and d is the common difference. In this case, the first term a_1 is 11 and the common difference d is 7. So, the nth term of this sequence is 11 + (n-1)7, which simplifies to 11 + 7n - 7, or 7n + 4.


What is the nth term of 9 11 13 15 17?

The sequence is simply achieved by adding 2 to each value9+2=1111+2=1313+2=1515+2=1717+2=1919+2=21so the nth term can be calculatedThe value of the nth term = the value of (nth-1 term) +2.


What is the nth term of 3 6 11 18 27?

The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.


Find the nth term 11,17,23,29?

I believe the answer is: 11 + 6(n-1) Since the sequence increases by 6 each term we can find the value of the nth term by multiplying n-1 times 6. Then we add 11 since it is the starting point of the sequence. The formula for an arithmetic sequence: a_{n}=a_{1}+(n-1)d


What is the nth term for 7n-4?

11


What is the nth term formula of 100 89 78 67?

clearly the given series is an arithmetic progression with a common difference of -11,that is every term is obtained by subtracting 11 from the previous term for any A.P, n-th term is a(n)=a(1)+ (n-1)d where a(1)=first term and d=common difference here a(1)=100, and d= -11 so, a(n)=100+(n-1)x(-11) or, a(n)=111-11n


What is the nth term for 7 11 15 19?

The nth term in this sequence is 4n + 3.


What is the nth term for 11 9 7 5?

Oh, dude, it's like a pattern party! So, to find the nth term for this sequence, you first need to figure out the pattern. Looks like each number is decreasing by 2. So, the nth term would be 13 - 2n. Easy peasy, right?


What is the nth term of -7 -3 1 5?

Without further restrictions it can be any of an infinite number of formulae.For example, U{n} = (11n⁴ - 110x³ + 385x² - 518x + 176)/8 which gives the next term as 42.However, if it is an ARITHMETIC SEQUENCE (as I suspect your teacher wants), then the nth term is found:Common difference: (-3) - (-7) = 4→ 0th term is -7 - 4 = -11→ nth term U{n} = 4n - 11