To find the sum of the first 28 terms of an arithmetic sequence, you need the first term (a) and the common difference (d). The formula for the sum of the first n terms (S_n) of an arithmetic sequence is S_n = n/2 * (2a + (n - 1)d). Once you have the values of a and d, plug them into the formula along with n = 28 to calculate the sum.
To find the sum of the arithmetic sequence from 3 to 90 that is divisible by 5, we first identify the terms: the first term is 5 and the last term is 90. The sequence of terms divisible by 5 is 5, 10, 15, ..., 90. This is an arithmetic sequence where the first term (a = 5), the last term (l = 90), and the common difference (d = 5). The number of terms (n) can be calculated as ((l - a)/d + 1 = (90 - 5)/5 + 1 = 18). The sum (S_n) of the sequence can be calculated using the formula (S_n = n/2 \times (a + l)), resulting in (S_{18} = 18/2 \times (5 + 90) = 9 \times 95 = 855). Thus, the sum is 855.
In an arithmetic sequence, the sum of the first ( n ) terms can be calculated using the formula ( S_n = \frac{n}{2} (a + l) ), where ( S_n ) is the sum, ( n ) is the number of terms, ( a ) is the first term, and ( l ) is the last term. Given ( S_{10} = 530 ) and ( l = 80 ), we can set up the equation: [ 530 = \frac{10}{2} (a + 80) ] This simplifies to: [ 530 = 5(a + 80) ] Solving for ( a ), we find ( a + 80 = 106 ), leading to ( a = 26 ). Thus, the first term is 26.
The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.
-5 19 43 67 ...This is an arithmetic sequence because each term differs from the preceding term by a common difference, 24.In order to find the sum of the first 25 terms of the series constructed from the given arithmetic sequence, we need to use the formulaSn = [2t1 + (n - 1)d] (substitute -5 for t1, 25 for n, and 24 for d)S25 = [2(-5) + (25 - 1)24]S25 = -10 + 242S25 = 566Thus, the sum of the first 25 terms of an arithmetic series is 566.
Sequences can be categorized into several types, including arithmetic, geometric, and harmonic sequences. An arithmetic sequence has a constant difference between consecutive terms, while a geometric sequence has a constant ratio. Harmonic sequences involve the reciprocals of an arithmetic sequence. Additionally, there are recursive sequences, where each term is defined based on previous terms, and Fibonacci sequences, characterized by each term being the sum of the two preceding ones.
a1=2 d=3 an=a1+(n-1)d i.e. 2,5,8,11,14,17....
49
Sum of 1st 2 terms, A2 = 2 + 4 = 6 Sum of 1st 3 terms, A3 = 2 + 4 + 6 = 12 Sum of 1st 4 terms A4 = 2 + 4 + 6 + 12 = 20 you can create a formula for the sum of the 1st n terms of this sequence Sum of 1st n terms of this sequence = n2 + n so the sum of the first 48 terms of the sequence is 482 + 48 = 2352
The sum of the first 12 terms of an arithmetic sequence is: sum = (n/2)(2a + (n - 1)d) = (12/2)(2a + (12 - 1)d) = 6(2a + 11d) = 12a + 66d where a is the first term and d is the common difference.
sequence 4 5 6 sum =10 sequecnce 0 5 10 sum=10
To find the sum of the arithmetic sequence from 3 to 90 that is divisible by 5, we first identify the terms: the first term is 5 and the last term is 90. The sequence of terms divisible by 5 is 5, 10, 15, ..., 90. This is an arithmetic sequence where the first term (a = 5), the last term (l = 90), and the common difference (d = 5). The number of terms (n) can be calculated as ((l - a)/d + 1 = (90 - 5)/5 + 1 = 18). The sum (S_n) of the sequence can be calculated using the formula (S_n = n/2 \times (a + l)), resulting in (S_{18} = 18/2 \times (5 + 90) = 9 \times 95 = 855). Thus, the sum is 855.
An arithmetic sequence is a list of numbers which follow a rule. A series is the sum of a sequence of numbers.
10,341
An arithmetic series is the sum of the terms in an arithmetic progression.
In an arithmetic sequence, the sum of the first ( n ) terms can be calculated using the formula ( S_n = \frac{n}{2} (a + l) ), where ( S_n ) is the sum, ( n ) is the number of terms, ( a ) is the first term, and ( l ) is the last term. Given ( S_{10} = 530 ) and ( l = 80 ), we can set up the equation: [ 530 = \frac{10}{2} (a + 80) ] This simplifies to: [ 530 = 5(a + 80) ] Solving for ( a ), we find ( a + 80 = 106 ), leading to ( a = 26 ). Thus, the first term is 26.
RAMANUJANRAMANUJAN
The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.The formula for the sum of an arithmetic sequence is ((first number) + (last number)) x (how many numbers) / 2, in this case, (1 + 100) x 100 / 2.