The integral of 2x is x^2+c, where c is a constant. If this is a definite integral, meaning that the limits of integration are known, then c=0. If this is an indefinite integral, meaning the limits of integration are unknown, then c should either be left as is or solved for using an initial condition.
Integral of 2x dx /(2x-2) Let 2x=u 2 dx = du dx = (1/2) du Integral of 2x dx /(2x-2) = Integral of (1/2) u du / (u-2) = Integral of 1/2 [ (u-2+2) / (u-2)] dx = Integral of 1/2 [ 1+ 2/(u-2)] dx = u/2 + (1/2) 2 ln(u-2) + C = u/2 + ln(u-2) + C = (2x/2) + ln(2x-2) + C = x + ln(2x-2) + C
I will denote an integral as \int (LaTeX). We can let u = 2x and du = 2dx, and substitute \int ln (2x) dx = (1/2) \int ln u du. Either using integration by parts or by memorization, this is equal to (1/2) u ln u - u + C = (1/2)(2x ln (2x) - 2x) + C, where C is an arbitrary constant.
Int[3x-x+2] =Int[2x+2] =x^2 +2x +C
Keep in mind that the integral of ex = ex and 2x = ex / ln 2. You can then rewrite the exponent as u = 2x, convert dx to du, and from there it's pretty straightforward. (I've left off the "+ C" part, because you should just know that.)
Well if you are talking about calculus, integration is the anti-derivative. So as my teacher explained to us, instead of going down, you will go up. For example if you have the F(x) = 2x, the F'(x) = 2. F'(x) is the derivative here, so you will do the anti of a derivative. So with the same F(x) = 2x the integral, is SF(x) = 1/3x^3. The Integral will find you the area under the curve.
Integral of 1 is x Integral of tan(2x) = Integral of [sin(2x)/cos(2x)] =-ln (cos(2x)) /2 Integral of tan^2 (2x) = Integral of sec^2(2x)-1 = tan(2x)/2 - x Combining all, Integral of 1 plus tan(2x) plus tan squared 2x is x-ln(cos(2x))/2 +tan(2x)/2 - x + C = -ln (cos(2x))/2 + tan(2x)/2 + C
2 2x makes no sense. If you meant the integral of 2x, it is x2 + C. If you meant the integral of 4x, it is 2x2 + C. If you meant the integral of 2x2, it is 2/3 x3 + C.
The integral of a single term of a polynomial, in the form of AxN is (A/N+1) x (N+1). The first integral of 2x is x2 + C. The second integral of 2x is the first integral of x2 + C, which is 1/3x3 + Cx + C.
0.5
The indefinite integral of sin 2x is -cos 2x / 2 + C, where C is any constant.
Integral of 2x dx /(2x-2) Let 2x=u 2 dx = du dx = (1/2) du Integral of 2x dx /(2x-2) = Integral of (1/2) u du / (u-2) = Integral of 1/2 [ (u-2+2) / (u-2)] dx = Integral of 1/2 [ 1+ 2/(u-2)] dx = u/2 + (1/2) 2 ln(u-2) + C = u/2 + ln(u-2) + C = (2x/2) + ln(2x-2) + C = x + ln(2x-2) + C
Integral( sin(2x)dx) = -(cos(2x)/2) + C
I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3
The integral of 2-x = 2x - (1/2)x2 + C.
= inegrate (e-2x) / derivate -2x = (e-2x)/-2-> integral esomething = esomething , that's why (e-2x) don't change-> (-2x)' = -2
Hopefully I did this one correctly, if anyone sees an error please correct it. This is the problem:∫(2x+7)/(x2+2x+5)I rewrote the integral as:2∫x/(x2+2x+5) + 7∫1/(x2+2x+5)Both of these parts of the integral is in a form that should be listed in most integral tables in a calculus text book or on-line. From these tables the integral is the following:2*[(1/2)ln|x2+2x+5| - (1/2)tan-1((2x+2)/4)] + 7*[(1/2)tan-1((2x+2)/4)]Combining like terms gives the following:ln|x2+2x+5| + (5/2)*tan-1((2x+2)/4)
convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx