-3
The correct formula for exponential interpolation is: y =ya*(yb/ya)^[(x-xa)/(xb-xa)], xa<x<xb and also, x=xa*[ln(yb)-ln(y)]/[ln(yb)-ln(ya)]+xb*[ln(y)-ln(ya)]/[ln(yb)-ln(ya)], ya<y<yb
y is greater than 0 x exist in a set of real numbers
Use the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln x
y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
y=ax y'=ln(a)*ax
The ln(y) is only defined for positive values of y. So, ln(x2 + 2x - 8) is defined only for x2 + 2x - 8 > 0 ie for x< -4 or x > 2 So the domain is x< -4 or [union] x > 2
For the function: y = x^x^x (the superscript notation on this text editor does not work with double superscripts) To solve for the derivative y', implicit differentiation is needed. First, the equation must be manipulated so there are no x's raised to x's on the right side of the equation. So, both sides of the equation must be input into a natural logarithm, wherein we can use the properties of logarithms to remove the superscripted powers of the right side: ln(y) = ln(x^x^x) ln(y) = xxln(x) ln(y)/ln(x) = xx ln(ln(y)/ln(x)) = xln(x) eln(ln(y)/ln(x)) = exln(x) ln(y)/ln(x) = exln(x) ln(y) = ln(x)exln(x) Now there are no functions raised to functions (x's raised to x's). Deriving this equation yields: (1/y)(y') = ln(x)exln(x)(x(1/x) + ln(x)) + exln(x)(1/x) = ln(x)exln(x)(1 + ln(x)) + exln(x)(1/x) = exln(x)(ln(x)(1+ln(x)) + (1/x)) Solving for y' yields: y' = y[exln(x)(ln2(x) + ln(x) + (1/x))] or y = xx^x ln(y) = ln(x)x^x ln(y) = xxln(x) ln(y) = exlnxln(x) y'/y = exlnx[ln(x) + 1)ln(x) + exlnx(1/x) y' = y[exlnx(ln2(x) + ln(x) + 1/x)] y' = xx^x[exlnx(ln2(x) + ln(x) + 1/x)]
Give the domain for
The domain of y = 2x is [0, +infinity].
The domain is the x values, so x = 0 to 10. The range is the y values, so y = 0 to 25.
The range of -sin x depends on the domain of x. If the domain of x is unrestricted then the range of y is [-1, 1].
dy/dx = 3^x * ln(3)integral = (3^x) / ln(3)To obtain the above integral...Let y = 3^xln y = x ln 3y = e^(x ln 3)(i.e. 3^x is the same as e^(x ln 3) ).The integral will then be 3^x / ln 3 (from linear composite rule and substitution after integration).
I take this to be y = xex.Proceeding formally (ie, without regard to restrictions on the domain of ln x):Take natural logarithms of 'both sides' of above equation: ln y = ln x + xImplicit differentiation: y'/y = 1/x + 1Multiply both sides by y: y' = y ( 1/x + 1 )Replace y by its definition as a function: y' = xex ( 1/x + 1 ).
It depends on the domain of x.
I don't believe that the answer is ln(x)x^(ln(x)-2), since the power rule doesn't apply when you have the variable in the exponent. Do the following instead:y x^ln(x)Taking the natural log of both sides:ln(y)ln(x) * ln(x)ln(y) ln(x)^2Take the derivative of both sides, using the chain rule:1/y * y' 2 ln(x) / xy' 2 ln(x)/ x * yFinally, substitute in the first equation, y x^ln(x):y' 2 ln(x) / x * x^ln(x)y'2 ln(x) * x ^ (ln(x) - 1)Sorry if everything is formatted really badly, this is my first post on answers.com.
-1