It is: 10n-7 and so the next term is 43
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
n=n3. The numbers given in the question are equal to 13, 23, 33, 43, 53.
The first differences are 5, 7, 9, 11, 13 and the second differences are 2,2,2,2 so the formula for the nth term is a quadratic. tn = n2 + 2n - 2 (n = 1,2,3,...)
the anser is that you are stupid
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
58
18,23,28,33,... #1 is 18 #2 is 23 A difference of '5' Hence we can write '5n + x = 18 Where 'n' equals '1' Hence 5(1) + x = 18 5 + x = 18 Hence x = 18 - 5 = 13 So nth term is 5n + 13 NB Verification; does it work for the 4th term 5(4)+ 13 = 20 + 13 = 33 Which is true from above list.
The given sequence is 1, 6, 13, 22, 33. To find the nth term, we can observe that the differences between consecutive terms are 5, 7, 9, and 11, which indicates that the sequence is quadratic. The nth term can be expressed as ( a_n = n^2 + n ), where ( a_n ) is the nth term of the sequence. Thus, the formula for the nth term is ( a_n = n^2 + n ).
All you have to do is add 5 each time(x+5) It's 43
x2-3=n
n=n3. The numbers given in the question are equal to 13, 23, 33, 43, 53.
28
The first differences are 5, 7, 9, 11, 13 and the second differences are 2,2,2,2 so the formula for the nth term is a quadratic. tn = n2 + 2n - 2 (n = 1,2,3,...)
44