answersLogoWhite

0

Again, please clarify the question. Either "x=y^2/cos(x)*pi " or "x=y^2/cos(pi)". From the question it is not possible to tell whether the second "x" is a variable, or a multiplier sign (and if it were a multiplier, you're question is omitting a variable on the cos(x)).

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Other Math

What is the derivative of sinπx?

The derivative with respect to 'x' of sin(pi x) ispi cos(pi x)


What is the value of cos pie4?

cos pi over four equals the square root of 2 over 2 This value can be found by looking at a unit circle. Cos indicates it is the x value of the point pi/4 which is (square root 2 over 2, square root 2 over 2)


What is the equation of the line tangent to the curve y equals cos x at the point x equals pi over 6?

y = 2(x) - (pi/3) + (sqrt(3)/2)


Sin x - cos x 0 0?

sin x - cos x = 0sin x = cos x(sin x)^2 = (cos x)^2(sin x)^2 = 1 - (sin x)^22(sin x)^2 = 1(sin x)^2 = 1/2sin x = ± √(1/2)sin x = ± (1/√2)sin x = ± (1/√2)(√2/√2)sin x = ± √2/2x = ± pi/4 (± 45 degrees)Any multiple of 2pi can be added to these values and sine (also cosine) is still ± √2/2. Thus all solutions of sin x - cos x = 0 or sin x = cos x are given byx = ± pi/4 ± 2npi, where n is any integer.By choosing any two integers , such as n = 0, n = 1, n = 2 we can find some solutions of sin x - cos x = 0.n = 0, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(0)(pi) = ± pi/4 ± 0 = ± pi/4n = 1, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(1)(pi) = ± pi/4 ± 2pi = ± 9pi/4n = 2, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(2)(pi) = ± pi/4 ± 4pi = ± 17pi/4


Solve Cos x - 1 equals 0?

cos x - 1 = 0 cos(x) = 1 x = 0 +/- k*pi radians where k = 1,2,3,...

Related Questions

What is x equal y sq over cos x pi?

Can you please claify if you mean x=y^2/ pi*cos(x) , or x=y^2/cos(pi), since they are very different sums.


What is x equals y squared over co sign times pi?

Either you mean "cos(x) multiplied by pi", (i.e pi*cos(x)) or "cos(pi)" (i.e cosine of pi), but it is unclear which you mean from the question. Please clarify.


What is the derivative of cos pi x plus sin pi y all to the 8th power equals 44?

(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)


What is the cosine of negative pi over 3?

Cos(Pi/3) is 1/2 so Cos(-Pi/3) ould be flipped over the x-axis. The answer is still 1/2.


What is the derivative of sinπx?

The derivative with respect to 'x' of sin(pi x) ispi cos(pi x)


Cos x sin x identity?

cos(x) = sin(pi/2 + x)


What is the derivative of sin pi x?

If you mean y = Sin(pi(x)) Then Use the chain rule dy/dx = dy/du X du/dx Let pi(x) = u y = Sin (u) dy/du = Cos(u) u = pi(x) du/dx = pi Combining dy/dx = pi Cos(u) = piCos (pi(x)). The answer!!!!!


Simplify sin x plus sin x cotx equals cscx?

First convert everything to sines and cosines:sin x + sin x cos x / sin x = 1 / sin xsin x + cos x = 1 / sin xMultiplying by sin x:sin2x + sin x cos x = 1Using the identity sin2 + cos2x = 1:sin2x + sin x cos x = sin2x + cos2xsin x cos x = cos2xDividing by cos x:sin x = cos xThe solution is therefore x = pi / 4 radians, or x = 5 pi / 4 radians.The division by cos x assumed that cos x was not equal to zero; this possibility must be explored in the original equation. When cos x = 0, sin x = 1 or -1, and the angle x = pi/2 or -pi/2. It seems both of these are solutions, too.First convert everything to sines and cosines:sin x + sin x cos x / sin x = 1 / sin xsin x + cos x = 1 / sin xMultiplying by sin x:sin2x + sin x cos x = 1Using the identity sin2 + cos2x = 1:sin2x + sin x cos x = sin2x + cos2xsin x cos x = cos2xDividing by cos x:sin x = cos xThe solution is therefore x = pi / 4 radians, or x = 5 pi / 4 radians.The division by cos x assumed that cos x was not equal to zero; this possibility must be explored in the original equation. When cos x = 0, sin x = 1 or -1, and the angle x = pi/2 or -pi/2. It seems both of these are solutions, too.First convert everything to sines and cosines:sin x + sin x cos x / sin x = 1 / sin xsin x + cos x = 1 / sin xMultiplying by sin x:sin2x + sin x cos x = 1Using the identity sin2 + cos2x = 1:sin2x + sin x cos x = sin2x + cos2xsin x cos x = cos2xDividing by cos x:sin x = cos xThe solution is therefore x = pi / 4 radians, or x = 5 pi / 4 radians.The division by cos x assumed that cos x was not equal to zero; this possibility must be explored in the original equation. When cos x = 0, sin x = 1 or -1, and the angle x = pi/2 or -pi/2. It seems both of these are solutions, too.First convert everything to sines and cosines:sin x + sin x cos x / sin x = 1 / sin xsin x + cos x = 1 / sin xMultiplying by sin x:sin2x + sin x cos x = 1Using the identity sin2 + cos2x = 1:sin2x + sin x cos x = sin2x + cos2xsin x cos x = cos2xDividing by cos x:sin x = cos xThe solution is therefore x = pi / 4 radians, or x = 5 pi / 4 radians.The division by cos x assumed that cos x was not equal to zero; this possibility must be explored in the original equation. When cos x = 0, sin x = 1 or -1, and the angle x = pi/2 or -pi/2. It seems both of these are solutions, too.


How was it determined that the tangent of pi divided by 4 is 1?

As tan(x)=sin(x)/cos(x) and sin(pi/4) = cos(pi/4) (= sqrt(2)/2) then tan(pi/4) = 1


1 over tan x equals what?

1/ Tan = 1/ (Sin/Cos) = Cos/Sin = Cot (Cotangent)


What is the integral from 0 to pi over 6 sine 2x dx?

Integral from 0 to pi 6sin2xdx: integral of 6sin2xdx (-3)cos2x+c. (-3)cos(2 x pi) - (-3)cos(2 x 0) -3 - -3 0


What is x equals y squared over cos x pi?

cos(pi) = -1 so the equation becomes x = -y2. That is equivalent to y = sqrt(-x) The domain of this function is x ≤ 0. The graph of the function is the same as that of a unit parabola in the first quadrant rotated anticlockwise by pi/2 radians.