answersLogoWhite

0

If not p, then not q means that if something is not true or does not happen (p), then something else is also not true or does not happen (q).

User Avatar

AnswerBot

2mo ago

What else can I help you with?

Related Questions

If p q and q r then p r. Converse statement B.A syllogism C.Contrapositive statement D.Inverse statement?

Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r


What is the sum or difference of p and q?

The sum of p and q means (p+q). The difference of p and q means (p-q).


What is q²-p² divided by q-p?

q + p


What is the truth table for p arrow q?

Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q


If p is 50 of q then what percent of p is q?

If p = 50 of q then q is 2% of p.


How do you write the negation of if and then?

If p then q is represented as p -> q Negation of "if p then q" is represented as ~(p -> q)


Simplify pp - q - q q - p?

p-q


What does p over q mean in algebra?

P! / q!(p-q)!


Why does multiplication or division with a negative number yield a negative answer?

The assertion in the question is not always true. Multiplying (or dividing) 0 by a negative number does not yields 0, not a negative answer.Leaving that blunder aside, let p and q be positive numbers so that p*q is a positive number.Thenp*q + p*(-q) = p*[q + (-q)] = p*[q - q] = p*0 = 0that is p*q + p*(-q) = 0Thus p*(-q) is the additive opposite of p*q, and so, since p*q is positive, p*(-q) must be negative.A similar argument works for division.


How does every rational number have an additive inverse?

By definition, every rational number x can be expressed as a ratio p/q where p and q are integers and q is not zero. Consider -p/q. Then by the properties of integers, -p is an integer and is the additive inverse of p. Therefore p + (-p) = 0Then p/q + (-p/q) = [p + (-p)] /q = 0/q.Also, -p/q is a ratio of two integers, with q non-zero and so -p/q is also a rational number. That is, -p/q is the additive inverse of x, expressed as a ratio.


What type of operator can be used to determine whether a specific relationship that exists between two values?

The relational operators: ==, !=, =.p == q; // evaluates true if the value of p and q are equal, false otherwise.p != q; // evaluates true of the value of p and q are not equal, false otherwise.p < q; // evaluates true if the value of p is less than q, false otherwise.p q; // evaluates true if the value of p is greater than q, false otherwise.p >= q; // evaluates true of the value of p is greater than or equal to q, false otherwiseNote that all of these expressions can be expressed logically in terms of the less than operator alone:p == q is the same as NOT (p < q) AND NOT (q < p)p != q is the same as (p < q) OR (q < p)p < q is the same as p < q (obviously)p q is the same as (q < p)p >= q is the same as NOT (p < q)


Where p and q are statements p and q is called what of p and q?

The truth values.