It means that 0 < theta < pi/2 radians or 90 degrees.
Since theta is in the second quadrant, sin(theta) is positive. sin2(theta) = 1 - cos2(theta) = 0.803 So sin(theta) = +sqrt(0.803) = 0.896.
The angles in quadrant one measure between 0 degrees and 90 degrees. In radians, that's between 0 and pi/2. Quadrant one is the quadrant where both X and Y (or cosine theta and sine theta) are positive.
If tan theta equals 2, then the sides of the triangle could be -2, -1, and square root of 5 (I used the Pythagorean Theorem to get this). From this, sec theta is negative square root of 5. It is negative because theta is in the third quadrant, where cosine, secant, sine, and cosecant are all negative.
-0.5736
Since sin(theta) = 1/cosec(theta) the first two terms simply camcel out and you are left with 1 divided by tan(theta), which is cot(theta).
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
Since theta is in the second quadrant, sin(theta) is positive. sin2(theta) = 1 - cos2(theta) = 0.803 So sin(theta) = +sqrt(0.803) = 0.896.
If sin (theta) is 3/5, then sin2 (theta) is (3/5)2, or 9/25.
The answer depends on what theta is and the units of its measurement.
It is -sqrt(1 + cot^2 theta)
0.75
No, they cannot all be negative and retain the same value for theta, as is shown with the four quadrants and their trigonemtric properties. For example, in the first quadrant (0
Cotan(theta) is the reciprocal of the tan(theta). So, cot(theta) = 1/2.
The angles in quadrant one measure between 0 degrees and 90 degrees. In radians, that's between 0 and pi/2. Quadrant one is the quadrant where both X and Y (or cosine theta and sine theta) are positive.
In the third quadrant, both the x and y coordinates are negative. Since tangent is defined as the ratio of the opposite side to the adjacent side in a right triangle, in the third quadrant where both sides are negative, the tangent of an angle theta will be positive. Therefore, tan theta is not negative in the third quadrant.
cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
When you subtract theta from 180 ( if theta is between 90 degrees and 180 degrees) you will get the reference angle of theta; the results of sine theta and sine of its reference angle will be the same and only the sign will be different depends on which quadrant the angle is located. Ex. 150 degrees' reference angle will be 30 degrees (180-150) sin150=1/2 (2nd quadrant); sin30=1/2 (1st quadrant) 1st quadrant: all trig functions are positive 2nd: sine and csc are positive 3rd: tangent and cot are positive 4th: cosine and secant are positive