zero
sec(x)=1/cos(x), by definition of secant.
cos(t) - cos(t)*sin2(t) = cos(t)*[1 - sin2(t)] But [1 - sin2(t)] = cos2(t) So, the expression = cos(t)*cos2(t) = cos3(t)
cosec(q)*cot(q)*cos(q) = 1/sin(q)*cot(q)*cos(q) = cot2(q)
For any calculator Sec(Secant) = 1/Cos Csc (Cosecant) = 1/ Sin Cot (Cotangent) = 1/Tan
csc θ = 1/sin θ → sin θ = -1/4 cos² θ + sin² θ = 1 → cos θ = ± √(1 - sin² θ) = ± √(1 - ¼²) = ± √(1- 1/16) = ± √(15/16) = ± (√15)/4 In Quadrant III both cos and sin are negative → cos θ= -(√15)/4
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
For such simplifications, it is usually convenient to convert any trigonometric function that is not sine or cosine, into sine or cosine. In this case, you have: sin theta / sec theta = sin theta / (1/cos theta) = sin theta cos theta.
csc[]tan[] = sec[]. L: Change csc[] into one over sin[]. Change tan[] into sin[] over cos[]. R: Change sec[] into one over cos[]. 1/sin[] times sin[]/cos[] = 1/cos[]. L: To multiply 2 fractions, multiply the numerators, and multiply the denominators, and put the numerators' product over the denominators' product. R: Nothing more to do. sin[]/sin[]cos[] = 1/cos[]. L: You have a sin[] on both top and bottom. Cross them off to get a one on the top. 1/cos[] = 1/cos[]. Done. [] is theta. L is the left side of the equation. R is the right side.
Ut is equual to tan(theta) / (sec(theta) + 1)
The secant of an angle (2\theta), denoted as (\sec(2\theta)), is the reciprocal of the cosine of that angle. It can be expressed mathematically as (\sec(2\theta) = \frac{1}{\cos(2\theta)}). The value of (\sec(2\theta)) will depend on the specific angle (2\theta) and can be found using trigonometric identities or a calculator.
tan θ = sin θ / cos θ sec θ = 1 / cos θ sin ² θ + cos² θ = 1 → sin² θ - 1 = - cos² θ → tan² θ - sec² θ = (sin θ / cos θ)² - (1 / cos θ)² = sin² θ / cos² θ - 1 / cos² θ = (sin² θ - 1) / cos² θ = - cos² θ / cos² θ = -1
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0
sin(t) = 2/3 sin2(t) + cos2(t) = 1 so cos(t) = ± sqrt[1 - sin2(t)] but because t is in the first quadrant, cos(t) > 0 so cos(t) = + sqrt[1 - sin2(t)] = sqrt[1 - 4/9] = sqrt[5/9] = sqrt(5)/3 Then sec(t) = 1/cos(t) = 1/sqrt(5)/3 = 3/sqrt(5) = 3*sqrt(5)/5
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
1/cos y = sec y
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
sec x = 1/cos x sec x cos x = [1/cos x] [cos x] = 1