tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2
0.75
I assume. Since theta is a variable, standing for the measure of any angle.
No, they cannot all be negative and retain the same value for theta, as is shown with the four quadrants and their trigonemtric properties. For example, in the first quadrant (0
In a right triangle, the right angle is formed by sides a and b. Side c is the hypotenuse.Theta is the interior angle that joins (let's say) sides b and c. The sin of theta is the length of a over the length of c. The cos of theta is the length of b over the length of c. The tan of theta is the length of a over the length of b.Sin theta= opposite divided by hypotenuse. Cos theta=adjacent divided by hypotenuse. Tan theta=opposite over adjacent.(Sin1-Cos1)-Tan1=-1.25623905Sorry, that was a mathematician's joke.
Tan^2
It also equals 13 12.
It depends if 1 plus tan theta is divided or multiplied by 1 minus tan theta.
Ut is equual to tan(theta) / (sec(theta) + 1)
-2(cot2theta)
tan θ = sin θ / cos θ sec θ = 1 / cos θ sin ² θ + cos² θ = 1 → sin² θ - 1 = - cos² θ → tan² θ - sec² θ = (sin θ / cos θ)² - (1 / cos θ)² = sin² θ / cos² θ - 1 / cos² θ = (sin² θ - 1) / cos² θ = - cos² θ / cos² θ = -1
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2
If tan theta equals 2, then the sides of the triangle could be -2, -1, and square root of 5 (I used the Pythagorean Theorem to get this). From this, sec theta is negative square root of 5. It is negative because theta is in the third quadrant, where cosine, secant, sine, and cosecant are all negative.
The identity for tan(theta) is sin(theta)/cos(theta).
copy this and paste in your browsers address window http://www.wolframalpha.com/input/?i=tan+theta+%2B+sec+theta+%3D1
Yes.