The pattern is: +11, +15, +19, +23, +27 (4n+7)
So, the next number would be: (4*6 + 7) = 24 + 7 = +31
Therefore, the answer is: 105 + 31 = 136
The nth term in the arithmetic progression 10, 17, 25, 31, 38... will be equal to 7n + 3.
You can see that all the numbers go up by 7. This means that the first part of the nth term rule for this sequence is 7n. Now, you have to find out how to get from 7 to 3, 14 to 10, 21 to 17 ... this is because we are going up in the 7 times table. To get from the seventh times table to the sequence, you take away four. So the answer is : 7n-4
Say if you had the pattern 15 20 25 30 35 40 45 50 To find the nth term you have to see what the gap between the numbers is. In our case this is 5. Then you have to find out what the difference between the gap and the first number. In this sequence it is 10. So your answer would be..... 5n+10 That's how you find the nth term.
The nth term is 2n2. (One way to find that is to notice at all the numbers are even, then divide them by 2. The sequence becomes 1, 4, 9, 16, 25, which are the square numbers in order.)
10-2x for x = 0, 1, 2, 3, ... Since the domain of an arithmetic sequence is the set of natural numbers, then the formula for the nth term of the given sequence with the first term 10 and the common difference -2 is an = a1 + (n -1)(-2) = 10 - 2n + 2 = 12 - 2n.
The nth term of a sequence is the general formula for a sequence. The nth term of this particular sequence would be n+3. This is because each step in the sequence is plus 3 higher than the previous step.
10n + 1
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
7
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
6n+10
7n - 4
The nth term in the arithmetic progression 10, 17, 25, 31, 38... will be equal to 7n + 3.
15(1)
By "the nth term" of a sequence we mean an expression that will allow us to calculate the term that is in the nth position of the sequence. For example consider the sequence 2, 4, 6, 8, 10,... The pattern is easy to see. # The first term is two. # The second term is two times two. # The third term is two times three. # The fourth term is two times four. # The tenth term is two times ten. # the nineteenth term is two times nineteen. # The nth term is two times n. In this sequence the nth term is 2n.
no clue
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).