∫x3ex4 dx = 1/4ex4 + c To solve, let y = x4, then: dy = 4x3 dx ⇒ 1/4dy = x3 dx ⇒ ∫x3ex4 dx =∫ex4 x3 dx = ∫ey 1/4 dy = 1/4ey + c but y = x4, thus: = 1/4ex4 + c
The formula for finding the derivative of a log function of any "a" base is (dy/dx)log base a (x) = 1/((x)ln(a)) If we're talking about base "e" (natural logs) the answer is 1/(x-2) I think you're asking for the derivative of y = logx2. It's (-logx2)/(x(lnx)).
The slope is dy/dx = 8/4 = 2
start by setting y=lnx^lnx take ln of both sides lny=lnx(ln(lnx)) differentiate dy/dx(1/y)=(1+ln(lnx))/x dy/dx=y(1+ln(lnx))/x we know that y=lnx^lnx so we can just substatute back in dy/dx=(lnx^lnx)*(1+ln(lnx))/x
y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
y=x3+ 2x, dx/dt=5, x=2, dy/dt=? Differentiate the equation with respect to t. dy/dt=3x2*dx/dt Substitute in known values. dy/dt=3(2)2 * (5) dy/dt=60
Calculate dx when xy3 + y = 3x.
You take the change in Y or dy and divide it by the change in X or dx. Slope equals dy/dx.
dy/dx = a
x - y = xydifferentiating wrt x1 - (dy/dx) = x(dy/dx) + y(x + 1)(dy/dx) + y + 1 = 0
You have : y = e^(5x)^2 and de^u/dx = [ e^u ] [ du/dx ]dy/dx = [ e^(5x)^2 ] [ 10x ]
dy/dx = 2cos2x
The derivative of ln x, the natural logarithm, is 1/x.Otherwise, given the identity logbx = log(x)/log(b), we know that the derivative of logbx = 1/(x*log b).ProofThe derivative of ln x follows quickly once we know that the derivative of ex is itself. Let y = ln x (we're interested in knowing dy/dx)Then ey = xDifferentiate both sides to get ey dy/dx = 1Substitute ey = x to get x dy/dx = 1, or dy/dx = 1/x.Differentiation of log (base 10) xlog (base 10) x= log (base e) x * log (base 10) ed/dx [ log (base 10) x ]= d/dx [ log (base e) x * log (base 10) e ]= [log(base 10) e] / x= 1 / x ln(10)
y = ln(tan(x)) u = tanx y =ln(u) dy/du = 1/u du/dx = sec2(x) dy/dx = dy/du * du/dx = sec2(x)/tan(x)
y = ln (x) dy/dx = 1/x
y=2 sin(3x) dy/dx = 2 cos(3x) (3) dy/dx = 6 cos(3x)
-2y square exp power -2x-1