How many four digit combinations can be made from the number nine? Example, 1+1+2+5=9.
If the same 7 digits are used for all the combinations then n! = 7! = 7*6*5*4*3*2*1 = 5040 combinations There are 9,999,999-1,000,000+1=9,000,000 7-digit numbers.
For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.
There are 9 1-digit numbers and 16-2 digit numbers. So a 5 digit combination is obtained as:Five 1-digit numbers and no 2-digit numbers: 126 combinationsThree 1-digit numbers and one 2-digit number: 1344 combinationsOne 1-digit numbers and two 2-digit numbers: 1080 combinationsThat makes a total of 2550 combinations. This scheme does not differentiate between {13, 24, 5} and {1, 2, 3, 4, 5}. Adjusting for that would complicate the calculation considerably and reduce the number of combinations.
Just 1.
There are 5,461,512 such combinations.
64
Number of 7 digit combinations out of the 10 one-digit numbers = 120.
It depends on how many digit you are choosing from.
I am assuming you mean 3-number combinations rather than 3 digit combinations. Otherwise you have to treat 21 as a 2-digit number and equate it to 1-and-2. There are 21C3 combinations = 21*20*19/(3*2*1) = 7980 combinations.
6 of them.
44
How many four digit combinations can be made from the number nine? Example, 1+1+2+5=9.
The answer will depend on how many digits there are in each of the 30 numbers. If the 30 numbers are all 6-digit numbers then the answer is NONE! If the 30 numbers are the first 30 counting numbers then there are 126 combinations of five 1-digit numbers, 1764 combinations of three 1-digit numbers and one 2-digit number, and 1710 combinations of one 1-digit number and two 2-digit numbers. That makes a total of 3600 5-digit combinations.
In the number 5000, there is only one "1" present, which is in the thousands place. The digit "1" appears only once in the entire number.
To find the number of 5-digit combinations from 1 to 20, we first calculate the total number of options for each digit position. Since the range is from 1 to 20, there are 20 options for the first digit, 20 options for the second digit, and so on. Therefore, the total number of 5-digit combinations is calculated by multiplying these options together: 20 x 20 x 20 x 20 x 20 = 3,200,000 combinations.
the answer is = first 2-digit number by using 48= 28,82 and in 3 digit is=282,228,822,822