D
The vertex must be half way between the two x intercepts
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
It if the max or minimum value.
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
The vertex form for a quadratic equation is y=a(x-h)^2+k.
The vertex.
You should always use the vertex and at least two points to graph each quadratic equation. A good choice for two points are the intercepts of the quadratic equation.
D
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
y=2(x-3)+1
The vertex must be half way between the two x intercepts
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.
It depends on the level of your mathematical knowledge. One way is to differentiate the quadratic equation and find the value of x for which the derivative is 0. The advantage of this method is that it works for turning points of polynomials of all degrees. The disadvantage is that you need to know differentiation. For a quadratic, an alternative, and simpler way is to write the equation in the form: y = ax2 + bx + c Then the x value of the vertex is -b/2a
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
A quadratic equation always has 2 solutions.In the instance of perfect squares, however, there will be just one number, which is a double root. Graphically, this is equivalent of the vertex of a parabola just barely touching the x-axis.