answersLogoWhite

0

You would probably use a power-reduction trig identity to solve this equation.

This states that sin2(x) = (1 - cos(2x))/2

Therefore, sin2(2x) = (1 - cos(4x))/2, or (1/2)(1 - cos(4x))

So, ∫ (1/2)(1 - cos(4x)) dx = (1/2) ∫ (1 - cos(4x)) dx.

Then, ∫ (1-cos4x)dx = x - (1/4)sin(4x) + c

Now, multiply that by (1/2) to get:

(x - (sin(4x)/4) + c)/2

Since c is an arbitrary constant, we have:

½(x - sin(4x) / 4) + c

OR

1/8 * (4x - sin(4x)) + c

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: What is the integral of sin squared 2x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Integral of sin squared x?

First we look at the double-angle identity of cos2x. We know that: cos2x = cos^2x - sin^2x cos2x = [1-sin^2x] - sin^2x.............. (From sin^2x + cos^2x = 1, cos^2x = 1 - sin^2x) Therefore: cos2x = 1 - 2sin^2x 2sin^2x = 1 - cos2x sin^2x = 1/2(1-cos2x) sin^2x = 1/2 - cos2x/2 And intergrating, we get: x/2 - sin2x/4 + c...................(Integral of cos2x = 1/2sin2x; and c is a constant)


Integration of sin2x?

Integral( sin(2x)dx) = -(cos(2x)/2) + C


Integral of tan square x secant x?

convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx


Integral of sec2x-cosx plus x2dx?

I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3


Integral of sin x sin 2x?

Ok, I know that sin 2x can be substituted out for 2 sin x cos x. so now I have the Integral of (sin x ) ( 2 sin x cos x ) dx which is 2 sin2x cos x dx If I use integration by parts with the u and dv, I find myself right back again..can you help. The book gives an answer, but I am not sure how it was achieved. the book gives 2/3 sin 2x cos x - 1/3 cos 2x sin x + C I may be making this more difficult than it is ? when you get the integral of 2 sin2x cos x dx use u substitution. u= sinx du= cosxdx. Then you'll get the integral of 2u^2 du.. .and then integrate...