It is +/- 0.76
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
sin/cos
(/) = theta sin 2(/) = 2sin(/)cos(/)
Cos(360 - X) = Trig. Identity Cos(360)Cos(x) + Sin(360)Sin(x) => 1CosX + 0Sinx => CosX + o => CosX
To find the value of ( \cos^2 67^\circ - \sin^2 23^\circ ), we can use the identity ( \cos^2 \theta = 1 - \sin^2 \theta ). Since ( \sin 23^\circ = \cos 67^\circ ) (because ( 23^\circ + 67^\circ = 90^\circ )), we have ( \sin^2 23^\circ = \cos^2 67^\circ ). Thus, ( \cos^2 67^\circ - \sin^2 23^\circ = \cos^2 67^\circ - \cos^2 67^\circ = 0 ). Therefore, the value is ( 0 ).
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
(Sin theta + cos theta)^n= sin n theta + cos n theta
The identity for tan(theta) is sin(theta)/cos(theta).
The solution is found by applying the definition of complementary trig functions: Cos (&Theta) = sin (90°-&Theta) cos (62°) = sin (90°-62°) Therefore the solution is sin 28°.
It's 1/2 of sin(2 theta) .
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
because sin(2x) = 2sin(x)cos(x)
The equation cannot be proved because of the scattered parts.
The derivative of (sin (theta))^.5 is (cos(theta))/(2sin(theta))
csc θ = 1/sin θ → sin θ = -1/4 cos² θ + sin² θ = 1 → cos θ = ± √(1 - sin² θ) = ± √(1 - ¼²) = ± √(1- 1/16) = ± √(15/16) = ± (√15)/4 In Quadrant III both cos and sin are negative → cos θ= -(√15)/4
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta